Explore Your Local Site

Looks like you've landed on our   site. Let's take you home:    

Please note that the content and products on the    site might not be available in your region.

 

  Homepage
Continue on the current website:  

 

Artificial Intelligence Imaging Applications in Neuroradiology

Neurological disorders are responsible for the highest rate of disability and the second-highest rate of mortality globally (Feigin et al., 2020). Medical imaging in neurology mostly relies on modalities that generate large amounts of complex data including magnetic resonance imaging (MRI), computed tomography (CT), and nuclear imaging. Thus, a large amount of research into artificial intelligence (AI) applications in radiology has targeted neurological disorders. In fact, between 29% and 38% of all commercially available AI-based applications in radiology focus on the brain or spine, a higher proportion than for any other anatomical region (AI Central).

Most of these applications aim to help radiologists by either supporting their interpretation of images, for example, by making these tasks more efficient or by extending radiologists’ capabilities such as by providing more detailed quantification of neuroimaging data (Olthof et al., 2020). This book outlines the most common applications of AI in neuroradiology and discusses the evidence behind them.

 

Intracranial hemorrhage

Acute intracranial hemorrhage (ICH) affects about 3.4 million people every year worldwide (world stroke organisation 2022). ICH carries high morbidity and mortality and often requires prompt neurosurgical intervention or close clinical and imaging follow-up (Broderick et al., 2007; van Asch et al., 2010). Particularly in patients presenting with acute neurological deficits and suspected of having a stroke, the detection of acute intracranial hemorrhage is of paramount importance as it is an absolute contraindication to intravenous thrombolysis (Fugate & Rabinstein, 2015).

In the emergency setting, suspected cases of ICH are usually initially investigated using non-contrast CT (NCCT) of the head. This is because CT is widely available, quick, highly sensitive for ICH, and has relatively few contraindications (A. Jain et al., 2021). The alternative is MRI, which is more sensitive to very small and chronic hemorrhages but is slower, less readily available, more expensive, and contraindicated in some patients (Chalela et al., 2007).

In a study aimed to determine patterns of error by radiology residents in detecting ICH, researchers found discrepancies in 4.6% of the resident-interpreted overnight examinations and of that percentage 13.6% were due to hemorrhage that was not included or inaccurately reported in the residents’ report. (Strub et al., 2007). ICH can be subdivided into intraparenchymal hemorrhage, intraventricular hemorrhage, subdural hemorrhage, extradural hemorrhage, and subarachnoid hemorrhage. Of these, subdural and subarachnoid hemorrhages are the commonly missed, particularly if very small (Strub et al., 2007). In addition, normal brain anatomy and image artifacts are often mistaken for intracranial hemorrhage by reporting radiology residents (Erly et al., 2002).

The vast majority of AI-based applications aiming to detect and classify intracranial hemorrhage use NCCT as an input and are based on convolutional neural networks. With few exceptions (Bar et al., 2019; Wang et al., 2021; Ye et al., 2019), very detailed descriptions of the network architecture are not readily available for most applications. The amount and quality of the data used to train these algorithms varies widely, from hundreds (Bar et al., 2019; Heit et al., 2021) to thousands (McLouth et al., 2021; Rava, Seymour, et al., 2021) to tens of thousands (Chilamkurthy et al., 2018; Gibson et al., 2022; Ginat, 2021) of NCCT examinations.

In addition to the classification of the presence or absence of ICH, AI-based algorithms applications have also been used to classify ICH subtypes (Chilamkurthy et al., 2018; Gibson et al., 2022; Wang et al., 2021; Ye et al., 2019), detect associated findings like mass effect, midline shift, and fractures (Chilamkurthy et al., 2018), and perform hemorrhage segmentation and volumetry (Bar et al., 2019; Gibson et al., 2022; Heit et al., 2021). Additionally, one AI-based application also estimates the degree of uncertainty in the algorithm’s decision to help the radiologist interpret the algorithm’s output (Gibson et al., 2022).

Among the subtypes of ICH, AI-based applications from the studies mentioned generally show the highest sensitivity for intraventricular hemorrhage (Chilamkurthy et al., 2018; Gibson et al., 2022; McLouth et al., 2021; Wang et al., 2021), most likely because of the large difference in CT density between cerebrospinal fluid and blood. Across applications, sensitivity is relatively low for subarachnoid hemorrhages (Gibson et al., 2022; McLouth et al., 2021; Rava, Seymour, et al., 2021; Wang et al., 2021; Ye et al., 2019), possibly because these tend to be small and/or adjacent to bony structures or hyperdense CT artifacts (e.g. in the basal cisterns). Other applications have also shown relatively low sensitivity for subdural hemorrhage, particularly when in less common locations such as along the cerebral falx (Chilamkurthy et al., 2018; Rao et al., 2021; Wang et al., 2021; Ye et al., 2019). Sensitivity also tends to be lower for smaller hemorrhages, defined as <1.5 mL or <5 mL, depending on the study (Heit et al., 2021; McLouth et al., 2021; Rava, Seymour, et al., 2021). Only one of the studies mentioned have systematically investigated differences between scanner vendors and scanning parameters on the diagnostic performance of AI-based applications for ICH detection (McLouth et al., 2021).

Some studies have directly compared the AI-based applications’ performance to that of experts. In a study of 160 NCCTs (49% with ICH) using a neuroradiology consultant’s assessment as ground truth, a U-Net convolutional neural network (CNN) showed lower sensitivity (91%) and specificity (89%) compared to two neuroradiology residents (99-100% sensitivity and 98% specificity)(Schmitt et al., 2022). In another study, interpretations from a FDA-approved and CE-marked AI-based application were compared with readings from a panel of three attending neuroradiologists that defined ground truth.

The AI-based application demonstrated the same sensitivity as a neuroradiology fellow (91.9%), however the application’s specificity was substantially lower (application: 84.4%; fellow: 99.6%)(Eldaya et al., 2022). Another AI-based application had a higher sensitivity and slightly lower specificity for ICH than radiology trainees (Ye et al., 2019). Dural thickening, dural and intraparenchymal calcifications, and motion or streak artifacts are most likely to be mistaken for ICH by AI-based applications (Bar et al., 2019; Eldaya et al., 2022; Rao et al., 2021).

Many studies have investigated the diagnostic accuracy AI-based applications for detecting ICH, however another potential benefit to AI-based screening for ICH is that exams can be read faster which may lead to patients being managed more quickly. Although fewer studies have evaluated the impact AI-based screening has had on timing, some studies provide support for faster reading times. In a study of 620 NCCTs, the time from exam completion to reporting was 73 minutes when the AI notified the human reader that it had found something, as opposed to 132 minutes when no such notification took place (Wismüller & Stockmaster, 2020). In another study, using the AI-based application was associated with shorter patient stays in the emergency department (561 minutes vs 781 minutes without the AI) (Chien et al., 2022).

 

Acute ischemic stroke

Large vessel occlusion

In patients with acute ischemic stroke, quickly identifying occlusions of large vessels in the brain is essential for timely treatment. In general, the term “large vessel occlusion (LVO)” refers to occlusions of arteries large enough to be amenable to mechanical thrombectomy. Currently, this includes the internal carotid artery (ICA)m the proximal parts of the middle (M1 and M2), anterior (A1), and posterior (P1) cerebral arteries, as well as the basilar artery (Mokin et al., 2019; Pirson et al., 2022).

LVOs are either detected directly using digital subtraction angiography, CT angiography, or MR angiography or indirectly using non-angiographic techniques. On angiography, vessel occlusions appear as a sudden interruption of either contrast filling of an artery (in contrast-enhanced angiography) or flow signal (in non-contrast-enhanced techniques such as time-of-flight MR angiography). This can occur with or without the presence of contrast filling or flow signal distal to the occlusion site. Indirect imaging signs of LVO on non-angiographic techniques include a hyperdense vessel on NCCT (representing the occluding thrombus) (Gács et al., 1983) and a susceptibility thrombus sign on T2*- or susceptibility-weighted MR images (Flacke et al., 2000).

Most AI-based solutions for LVO detection use CT angiography (Amukotuwa et al., 2019; Murray et al., 2020; Rava, Peterson, et al., 2021; Wardlaw et al., 2022; Yahav-Dovrat et al., 2021), while others use NCCT (Lisowska et al., 2017; Olive-Gadea et al., 2020). Most applications have focused on LVOs of the intracranial arteries of the anterior circulation (Adhya et al., 2021; Amukotuwa et al., 2019; Dehkharghani et al., 2021; Rava, Peterson, et al., 2021), reflecting the fact that mechanical thrombectomy is much less commonly performed in posterior circulation vessel occlusions (Adusumilli et al., 2022).

In a review of evidence on AI-based applications for detecting LVO sensitivities ranged from 80-96% and specificities ranging from 90-98% (Wardlaw et al., 2022). False positives from the studies included in the review of evidence were commonly due to arterial stenosis, intracranial hemorrhage, hypervascular tumors, or distal vessel occlusions that do not fulfill the criteria of an LVO (Amukotuwa et al., 2019; Yahav-Dovrat et al., 2021). Unfortunately, published performance data are not available for a number of CE-marked AI-based solutions, including some designed for LVO detection (van Leeuwen et al., 2021).

At the time of writing this publication, there is only one study available that investigated the costeffectiveness of AI-based tools for LVO detection. The study’s analysis showed that, assuming that 6% of LVOs are missed by clinicians and AI can help reduce that by half, cost savings of $11 million per year could be achieved in the United Kingdom (van Leeuwen, Meijer, et al., 2021).

Because LVOs are not commonly missed on angiographic techniques by radiologists and radiology residents (Duvekot et al., 2021), the primary potential benefit of AI-based LVO detection is expediting treatment by providing a faster assessment. Some of the currently available applications require between about 1 and 3.5 minutes to process the data and reach a decision regarding the presence of an LVO (Amukotuwa et al., 2019; Dehkharghani et al., 2021; Olive-Gadea et al., 2020). Some tools have been associated with a reduction in the time from imaging to patient transfer to a hospital capable of performing mechanical thrombectomy by about 22.5 minutes (Hassan et al., 2020), the time from the patient’s arrival to the hospital to notification of the neuroendovascular team by about 15 minutes (Morey et al., 2021), and the time from imaging to groin puncture for mechanical thrombectomy by about 25 minutes (Adhya et al., 2021).

Early ischemic brain tissue changes

On CT, early brain tissue changes associated with ischemia include tissue swelling and reduced tissue attenuation due to ionic edema (Marks et al., 1999). These changes are incorporated into visual rating tools used by radiologists, the most common being the Alberta Stroke Program Early CT Score (ASPECTS). ASPECTS can help predict both functional outcomes and the development of symptomatic intracranial hemorrhage after intravenous thrombolysis (Schröder & Thomalla, 2016). Most AI-based applications aiming to detect early ischemic changes on NCCT do so by providing an automated assessment of ASPECTS (Wardlaw et al., 2022). Other applications aim to identify early ischemic changes using CT-angiography (Abdelkhaleq et al., 2021; Öman et al., 2019) or CT-perfusion (Hakim et al., 2021).

The majority of AI-based algorithms for identifying early ischemic changes on CT have used visual assessment of NCCT by radiologists, neuroradiologists, or other clinicians as a reference standard (Goebel et al., 2018; Hoelter et al., 2020; Kniep et al., 2020; Maegerlein et al., 2019; Seker et al., 2019), while some have used MRI diffusion-weighted imaging (Abdelkhaleq et al., 2021; Herweh et al., 2016; H. Kuang et al., 2019; Qiu et al., 2020) or the infarct core defined by CT perfusion (Olive-Gadea et al., 2019). Most of these applications use either random forests (Guberina et al., 2018; Herweh et al., 2016; Kniep et al., 2020; H. Kuang et al., 2019; Maegerlein et al., 2019; Nagel et al., 2017; Olive-Gadea et al., 2019; Qiu et al., 2020) or convolutional neural networks (Öman et al., 2019). In addition, many studies have focused on the automated identification of early ischemic changes on diffusion-weighted MRI (Boldsen et al., 2018; Mohd Saad et al., 2019; Nazari-Farsani et al., 2020; Siddique et al., 2022; Song, 2019; Wong et al., 2022), which is a highly sensitive but not widely available method in acute settings.

Similar to LVO applications, publicly available performance data is unavailable for some CE-marked AI-based solutions for the detection of early ischemic changes (van Leeuwen et al., 2021). The algorithm for which the most published data are available is a random forest approach to ASPECTS assessment that was found to be non-inferior to neuroradiologists with a sensitivity of 44% and specificity of 93% using follow-up CT as ground truth (Nagel et al., 2017). Another study using the same algorithm and ground truthing method found that the algorithm had a higher sensitivity (83% vs 73%) but lower specificity (57% vs 84%) for ASPECTS scoring compared to neuroradiologists (Guberina et al., 2018). In a third study, this algorithm also performed better at ASPECTS scoring compared to neurologists and neurology residents, and performed similarly in comparison to neuroradiologists (Ferreti et al., 2020).

Overall, few studies have directly compared different AI-based applications for detecting early ischemic changes on NCCT (Goebel et al., 2018; Hoelter et al., 2020). In one study, three commercially available applications (two based on machine learning and one based on densitometry) were compared in 131 patients (Hoelter et al., 2020).

The study found that the AI-based applications had an area under the curve (AUC) of between 0.73 and 0.76 compared to the consensus of three neuroradiologists.

Visual evaluation of early ischemic changes on NCCT is particularly difficult in the posterior fossa, where artifacts are common and hinder interpretability (Hwang et al., 2012). In a cohort of 69 patients with basilar artery occlusions who received a NCCT within 6 hours of symptom onset, a random-forest-based algorithm identified early ischemic changes in the posterior circulation with an AUC ranging from 0.70 (in the cerebellum) to 0.82 (in the thalamus) using follow-up NCCT as ground truth (Kniep et al., 2020). Several factors besides anatomic location influence the detectability of early ischemic changes on NCCT. One study found that the accuracy of ASPECTS assessment differs according to the type of CT reconstruction used, but an automated algorithm performed more consistently across several investigated CT reconstructions than radiology residents or consultants (Seker et al., 2019). In addition, the accuracy of both human and AI-based ASPECTS assessments increases with longer time from symptom onset to NCCT due to early ischemic changes becoming more pronounced (Potreck et al., 2022).

Strokes of unknown onset time

Knowing how long it has been since stroke symptoms started is crucial for guiding appropriate treatment because intravenous thrombolysis is only indicated when given within 4.5 hours of symptom onset (Powers et al., 2018). Stroke onset is not always definitive, for instance in patients presenting with wake-up stroke. Wake-up stroke occurs in approximately 14% of patients as reported in a population-based study performed on patients presenting to an emergency department (Mackey et al., 2011). Several imaging based approaches to identifying patients within the thrombolysis time window have been proposed. One thoroughly investigated approach thus far has been the presence of an acute stroke lesion on diffusion-weighted imaging (DWI) and its absence on fluid-attenuated inversion recovery (FLAIR) MRI. (Ebinger et al., 2010; Thomalla et al., 2011; Thomalla et al., 2018). Automated interpretation of DWI and FLAIR MRI images have also become a target of AI-based algorithms designed to assist radiologists.

Approaches to AI-based classification of stroke onset times have included CNNs (Polson et al., 2022) or a combination of different machine-learning algorithms (Jiang et al., 2022; H. Lee et al., 2020; Zhu et al., 2021). Some studies have used a radiomics-based approach involving segmenting DWI and FLAIR lesions, extracting different imaging features from them, and then feeding these features to different classification algorithms (Jiang et al., 2022; H. Lee et al., 2020; Zhu et al., 2021).

AI-based classification of stroke onset times has yielded higher sensitivities but lower specificities than visual assessment by radiologists in several studies (H. Lee et al., 2020; Polson et al., 2022). Sensitivities ranging from 73-86% and specificities ranging from 68-85% have been reported (Jiang et al., 2022; H. Lee et al., 2020; Polson et al., 2022; Zhu et al., 2021). A study using a radiomics-based approach based on only the DWI and T1-weighted images combined with a deep-learning algorithm found a sensitivity of 95% and a specificity of 50% for identifying patients within the thrombolysis time window (Y.-Q. Zhang et al., 2022).

 

Traumatic brain injury

Acute traumatic brain injury (TBI) is a sudden physical trauma that damages the brain. Its manifestations include ICH, diffuse axonal injury, and skull and facial fractures. In addition, consequences of some of these manifestations such as midline shift and brain herniation, which can require emergency treatment if severe, can be detected on imaging (Schweitzer et al., 2019).

Though, undisplaced skull fractures without associated ICH are treated conservatively (Skull Fractures, n.d.), few studies have addressed their detection using AI-based techniques. Nonetheless, some attempts have recently been made to classify skull fractures detected on NCCT.

An algorithm based on a multi-label learning approach and trained on 174 NCCTs (103 with fractures) showed a 98% precision and 92% specificity for detecting skull fractures (Emon et al., 2022). The lowest precision and specificity were for depressed fractures, and the highest precision and specificity were for linear fractures and facial fractures. A deep-learning-based application aimed at detecting critical findings on non-contrast head CT showed a sensitivity of 81.2-87.2% and a specificity of 77.5-86.1% (depending on the test dataset) for detecting skull fractures (Chilamkurthy et al., 2018). In the same study, midline shift and mass effect, both common consequences of trauma-related ICH, were identified with a sensitivity of 87.5-90.1% and 70.9-81.2% as well as a specificity of 83.7-89.4% and 61.6-73.4% (depending on the test dataset), respectively. An algorithm that combined extraction of the skull’s morphological features with CNNs and was trained on 25 NCCTs and tested on 10 NCCTs from head trauma patients had an average precision of 60% for detecting skull fractures (Z. Kuang et al., 2020). Another deep learning algorithm was 91.4% sensitive and 87.5% specific in identifying skull fractures in a series of 150 postmortem head CTs (Heimer et al., 2018).

 

Neurodegenerative diseases

Many neurological conditions can be described as neurodegenerative, but the term is usually used to refer to chronic neurological diseases associated with gradual loss of brain tissue and generally causing dementia and/or motor dysfunction (Lamptey et al., 2022). More than a fifth of CE-certified or FDA-cleared AI-based algorithms in neuroradiology target patients with dementia (AI for Radiology, n.d.). Most of these automatically calculate regional brain volumes, measure cortical thickness, and quantify white matter lesions caused by cerebral small vessel disease (AI for Radiology, n.d.).

Many disease-specific AI-based algorithms target Alzheimer’s disease (AD), which is pathologically characterized by extracellular plaques composed of β-amyloid and intracellular neurofibrillary tangles containing tau and leads to progressive amnestic and non-amnestic cognitive impairment (Knopman et al., 2021). Some of these algorithms are capable of distinguishing between AD and cognitively normal individuals using MRI with sensitivities ranging from 78-99.1% and specificities ranging from 70- 92.68%(Battineni et al., 2022). An approach based on non-linear support vector machines was able to differentiate between AD and other dementia syndromes like frontotemporal lobar degeneration with an accuracy of 84% (Davatzikos et al., 2008).

Efforts have also been made to predict the conversion from the prodromal phase of AD to clinical AD as it is believed that the former is when therapeutic interventions might be particularly effective (Crous- Bou et al., 2017). Mild cognitive impairment (MCI) describes a condition when individuals have more severe cognitive deficits than is expected for their age but where this does not interfere significantly with their daily activities (Petersen, 2016). Several AI-based approaches have been used to predict conversion from MCI to AD with accuracies of 66-92% (Amoroso et al., 2018; Bron et al., 2015; Lebedev et al., 2014; G. Lee et al., 2019; Lu et al., 2018; Moradi et al., 2015; Ocasio & Duong, 2021; Salvatore et al., 2015; Spasov et al., 2019).

Early diagnosis is also considered important for the effective treatment of Parkinson’s disease (PD) (Pagan, 2012), another common neurodegenerative disease characterized pathologically by degeneration of dopaminergic neurons in the substantia nigra. By the time the motor symptoms that point towards a clinical diagnosis of PD appear, it is estimated that more than 60% of the brain’s dopaminergic neurons have been lost (GBD 2016 Parkinson’s Disease Collaborators, 2018). Several machine-learning approaches have been developed to distinguish between PD and healthy controls using morphological features derived from structural MRI (Adeli et al., 2016; Chakraborty et al., 2020; Peng et al., 2017), functional MRI (Long et al., 2012; Pläschke et al., 2017; Tang et al., 2017), positron emission tomography (PET) (Piccardo et al., 2021), and single-positron emission computed tomography (SPECT) (Choi et al., 2017; Hirschauer et al., 2015; Ozsahin et al., 2020), often in combination with clinical scores.

Because the motor symptoms of PD overlap with those of other neurological conditions, the clinical features alone are often not sufficient to confidently diagnose PD (Rizzo et al., 2016). Distinguishing idiopathic PD from atypical parkinsonian syndromes such as multisystem atrophy and progressive supranuclear palsy based on clinical features is particularly challenging (Rizzo et al., 2016). Leveraging the potential of neuroimaging to help make this distinction, an early study used support vector machine learning to classify idiopathic PD and other causes of parkinsonism using diffusion tensor imaging with a sensitivity of 94% and specificity of 100% (Haller et al., 2012). Several other studies showed high accuracies for distinguishing between idiopathic PD and atypical parkinsonism using structural MRI (Duchesne et al., 2009; Focke et al., 2011; Huppertz et al., 2016; Marquand et al., 2013; Salvatore et al., 2014), susceptibility-weighted imaging (Haller et al., 2013), and a combination of diffusion tensor imaging and structural MRI (Cherubini et al., 2014).

Studies have also been performed using machine learning models to help guide PD treatment. A study of 67 PD patients found that features extracted from functional MRI can classify optimal vs suboptimal parameters for deep brain stimulation with 88% accuracy (Boutet et al., 2021). This may help optimize the currently lengthy, costly, and cumbersome process of extensive clinical testing required to optimize deep brain stimulation parameters in PD patients.

 

Multiple sclerosis

Multiple sclerosis (MS) is a common autoimmune disorder of the central nervous system characterized pathologically by inflammatory demyelination and leading to a wide range of neurological manifestations (McGinley et al., 2021). MRI plays an important role in the diagnosis and management of MS and is the imaging technique of choice for quantifying and classifying MS lesions in the brain and spinal cord (Matthews et al., 2016). Imaging features are a crucial part of the diagnostic criteria for MS (Thompson et al., 2018) and guidelines recommend that MRI be used to monitor patients and guide treatment (Wattjes et al., 2015). Several AI-based algorithms have received FDA clearance and CE certification for the quantification of brain atrophy and automated segmentation of lesions in MS (Cavedo et al., 2022; Qubiotech Neurocloud Vol, 2021; Zaki et al., 2022).

Many AI-based algorithms in MS focus on the automated extraction of imaging features (Afzal et al., 2022; Bonacchi et al., 2022; Eichinger et al., 2020; Moazami et al., 2021). Visual assessment of the presence of MS lesions and their progression over time is an important part of MS diagnosis and monitoring but is time-consuming and difficult (Danelakis et al., 2018). Instead, several traditional machine learning (Brosch et al., 2016; Goldberg-Zimring et al., 1998; Karimian & Jafari, 2015; Samarasekera et al., 1997; Schmidt et al., 2012; S. Zhang et al., 2018) and deep learning approaches (Birenbaum & Greenspan, 2017; Deshpande et al., 2015; Roy et al., 2018; Valverde et al., 2017, 2019) for automatically segmenting MS lesions have been developed. About 30% of these studies use CNNs and 40% use support vector machine learning approaches (Afzal et al., 2022).

Deep learning approaches have yielded Dice similarity coefficients (a measure of spatial overlap ranging from 0 to 1) of 0.52 to 0.67 compared to manual lesion segmentations (Afzal et al., 2022). Several AI-based approaches to automatically quantify brain atrophy, which is another imaging predictor of MS evolution (Andravizou et al., 2019), have also been investigated (Dolz et al., 2018; Kushibar et al., 2018; Wachinger et al., 2018).

AI-based algorithms have also been leveraged to identify MRI abnormalities that are not clearly visible to the naked eye and are not included in the current diagnostic criteria for MS. These include abnormalities of the cerebral veins and iron deposition detected using susceptibility-weighted imaging (Lopatina et al., 2020) and abnormalities in normal-appearing areas of the white and gray matter in both conventional (Eitel et al., 2019) and advanced MRI sequences (Neeb & Schenk, 2019; Saccà et al., 2019; Yoo et al., 2018; Zurita et al., 2018).

Excluding diseases with a similar clinical presentation is necessary for the diagnosis of MS but is sometimes difficult (Wildner et al., 2020). Using features extracted from MRI, random forests and CNNs have yielded accuracies in distinguishing between MS and neuromyelitis optica spectrum disorders (Eshaghi et al., 2016; Rocca et al., 2021), non-inflammatory disorders of the white matter (Mangeat et al., 2020; Theocharakis et al., 2009), migraine (Rocca et al., 2021), vasculitis of the central nervous system (Rocca et al., 2021), and brain tumors (Ekşi et al., 2021).

MS is divided into several clinical phenotypes that have different prognoses and optimal treatment strategies (Lublin et al., 2014). Using diffusion tensor MRI (Kocevar et al., 2016; Marzullo et al., 2019), magnetic resonance spectroscopy (EkŞİ et al., 2020; Ion-Mărgineanu et al., 2017), and MR-based atrophy measures (Bonacchi et al., 2020), several studies have investigated the potential of AI-based approaches designed to distinguish between different MS clinical phenotypes.

MS treatment is personalized based on clinical, demographic, laboratory, and imaging prognostic markers (Rotstein & Montalban, 2019). Several AI-based algorithms have been evaluated for the ability to predict conversion from the first clinical episode suggestive of a chronic inflammatory CNS disease, known as a “clinically isolated syndrome”, to definite MS using MRI features with sensitivities of 64-77% and specificities of 66-78% (Bendfeldt et al., 2019; Wottschel et al., 2015, 2019). AI-based algorithms combining clinical and MRI data have also been designed to predict disease course and clinical disability (Filippi et al., 2013; Roca et al., 2020; Tommasin et al., 2021; Zhao et al., 2017, 2020). Using support vector machines and extremely randomized trees, a study found that a high-dimensional imaging “fingerprint” derived from T1-weighted images and FLAIRs was better at predicting MS treatment response than measures of treatment response derived from conventional MRI such as brain volume and the number and volume of lesions (AUC 0.89 vs. 0.69) (Kanber et al., 2019).

In addition, AI-based algorithms have shown potential for aiding MRI protocols used in MS. This includes extracting information from conventional MRI sequences, generating synthetic sequences from acquired images, for example, contrast-enhanced images from unenhanced MRI (Bonacchi et al., 2022).

Neurooncology

Brain tumors include both primary tumors of the brain (which can be either benign or malignant) and metastatic tumors from elsewhere in the body. Distinguishing between brain tumors and other conditions on imaging is important to avoid unnecessary biopsies and guide management (Abd- Ellah et al., 2019). By extracting features from T1- and T2-weighted MRIs, a regression-based classifier achieved an AUC of up to 0.99 for distinguishing between non-enhancing gliomas and inflammatory brain lesions (Y. Han et al., 2021). AI-based approaches have also been designed to predict glioma histopathological grades based on MRI, achieving an average accuracy of 89% ± 0.09%, reported in a systematic literature review (Bahar et al., 2022). Additionally, a random forest classifier using features from multiparametric MRI performed better than two senior radiologists at identifying the primary tumor in cases of brain metastasis (Kniep et al., 2019).

One of the most promising use cases for AI in neurooncological imaging is for using MRI to identify genetic mutations associated with tumors. This field, known as radiogenomics, is important because histopathologically similar tumors with different mutations respond to specific treatment strategies differently (Singh et al., 2021). Radiogenomics involves extracting features from multiple MRI sequences (anatomical sequences as well as diffusion-weighted and perfusion sequences) and using these features to predict genomic alterations in the tumor. Several approaches using decision trees and random forests have been designed to predict both single genetic mutations as well as more complex sets of genomic alterations in brain tumors (Akkus et al., 2017; P. Chang et al., 2018; L. Han & Kamdar, 2018; Hu et al., 2017; Kickingereder et al., 2016; Park et al., 2020). Imaging also plays an important role in assessing brain tumor response to treatments such as radiation, immunotherapy, chemotherapy, and surgery. This requires significant expertise, especially because imaging features of response and recurrence overlap with other treatment-related changes such as pseudoprogression, which is a transient increase in contrast enhancement and/or peritumoral edema after radiotherapy and chemotherapy (Raimbault et al., 2014; Thust et al., 2018).

In glioblastoma, the most common malignant primary brain tumor in adults, treatment response assessment involves manually measuring the volume of tumor tissue that takes up contrast agent (Leao et al., 2020). Accurate automated segmentation of brain tumor tissue has been achieved using support vector machine learning, random forests, and CNNs (Havaei et al., 2017; Kickingereder et al., 2019; Menze et al., 2015), with some CE-certified applications available (BioMind, n.d.). A meta-analysis found that deep learning outperforms traditional machine learning approaches for tumor segmentation (Kouli et al., 2022). In a large, multicenter study on a clinical data, automated tumor volumetry using CNNs showed suggested superiority to manual volumetry in calculating time to disease progression (Kickingereder et al., 2019).

Approaches using regression-based classification and CNNs have shown results for distinguishing between pseudoprogression and true progression of brain tumors on MRI (Jang et al., 2018, 2020; J. Y. Kim et al., 2019).

CNNs have also shown promise for differentiating radiation necrosis from tumor progression, achieving a sensitivity of 99.4% and specificity of 97.5% (Q. Zhang et al., 2019). The margins of brain tumors and their infiltration of surrounding tissue can be very difficult to distinguish from peritumoral edema. Regression-based classifiers, support vector machine learning classifiers, and CNSs have yielded accurate maps of peritumoral infiltration that may prove useful for surgical planning (Akbari et al., 2016; P. D. Chang, Chow, et al., 2017; P. D. Chang, Malone, et al., 2017).

There has been interest in AI-based approaches designed to improve MRI and assist radiologists with the diagnosis of brain tumors. Some targets for these AI-based approaches include, Image reconstruction algorithms based on CNNs improve spatial resolution and reduce noise, allowing smaller anatomical structures and tumor components to be seen. Such approaches have shown results for detecting pituitary microadenomas, identifying residual or recurrent tumor after treatment, and characterizing tumor invasion (M. Kim et al., 2021; D. H. Lee et al., 2021). Moreover, contrast-enhanced images synthesized from contrast-free images using generative adversarial networks (GANs) have been found to be useful for assessing response to glioblastoma treatment and may help reduce the use of MRI contrast agents (Jayachandran Preetha et al., 2021).

 

Conclusion

In the span of about a decade, research into applications of AI in neuroradiology has made remarkable progress. AI has been particularly useful in supporting the diagnosis of conditions such as stroke and intracranial hemorrhage, where timely detection is crucial. There is also growing evidence that AI could be used to monitor the progression of neurological conditions, predict outcomes, and ultimately allow for more personalized and effective treatment strategies. Research on AI-based algorithms should be supplemented in the future by analyzing the cost-effectiveness of these applications and the measuring the effect of their implementation on overall patient outcomes. In addition, these applications should be backed by more published data on their performance to encourage their use. Overall, the use of AI in neuroradiology holds great promise for improving the quality of patient care.

 

References 

Abdelkhaleq, R., Kim, Y., Khose, S., Kan, P., Salazar-Marioni, S., Giancardo, L., & Sheth, S. A. (2021). Automated prediction of final infarct volume in patients with large-vessel occlusion acute ischemic stroke. Neurosurgical Focus, 51(1), E13. https://doi.org/10.3171/2021.4.FOCUS21134

Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318. https://doi.org/10.1016/j.mri.2019.05.028

Adeli, E., Shi, F., An, L., Wee, C.-Y., Wu, G., Wang, T., & Shen, D. (2016). Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. NeuroImage, 141, 206–219. https://doi.org/10.1016/j.neuroimage.2016.05.054

Adhya, J., Li, C., Eisenmenger, L., Cerejo, R., Tayal, A., Goldberg, M., & Chang, W. (2021). Positive predictive value and stroke workflow outcomes using automated vessel density (RAPID-CTA) in stroke patients: One year experience. The Neuroradiology Journal, 34(5), 476–481. https://doi.org/10.1177/19714009211012353

Adusumilli, G., Pederson, J. M., Hardy, N., Kallmes, K. M., Hutchison, K., Kobeissi, H., Heiferman, D. M., & Heit, J. J. (2022). Mechanical thrombectomy in anterior vs. posterior circulation stroke: A systematic review and meta-analysis. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology, Surgical Procedures and Related Neurosciences, 15910199221100796. https://doi. org/10.1177/15910199221100796

Afzal, H. M. R., Luo, S., Ramadan, S., & Lechner-Scott, J. (2022). The emerging role of artificial intelligence in multiple sclerosis imaging. Multiple Sclerosis, 28(6), 849–858.  https://doi.org/10.1177/1352458520966298

AI Central. (n.d.). Retrieved July 2, 2022, fromhttps://aicentral.com/

AI for radiology(n.d.). Retrieved July 2, 2022, from https://grand-challenge.org/aiforradiology/

Akbari, H., Macyszyn, L., Da, X., Bilello, M., Wolf, R. L., Martinez-Lage, M., Biros, G., Alonso-Basanta, M., O’Rourke, D. M., & Davatzikos, C. (2016). Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma. Neurosurgery, 78(4), 572–580. https://doi.org/10.1227/NEU.0000000000001202

Akkus, Z., Ali, I., Sedlář, J., Agrawal, J. P., Parney, I. F., Giannini, C., & Erickson, B. J. (2017). Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence. Journal of Digital Imaging, 30(4), 469–476. https://doi.org/10.1007/s10278-017-9984-3

Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, A., Guaragnella, C., Bellotti, R., Tangaro, S., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge. Journal of Neuroscience Methods, 302, 3–9. https://doi.org/10.1016/j. jneumeth.2017.12.011

Amukotuwa, S. A., Straka, M., Smith, H., Chandra, R. V., Dehkharghani, S., Fischbein, N. J., & Bammer, R. (2019). Automated Detection of Intracranial Large Vessel Occlusions on Computed Tomography Angiography: A Single Center Experience. Stroke; a Journal of Cerebral Circulation, 50(10), 2790–2798. https://doi.org/10.1161/STROKEAHA.119.026259

Andravizou, A., Dardiotis, E., Artemiadis, A., Sokratous, M., Siokas, V., Tsouris, Z., Aloizou, A.-M., Nikolaidis, I., Bakirtzis, C., Tsivgoulis, G., Deretzi, G., Grigoriadis, N., Bogdanos, D. P., & Hadjigeorgiou, G. M. (2019). Brain atrophy in multiple sclerosis: mechanisms, clinical relevance and treatment options. Auto- Immunity Highlights, 10(1), 7. https://doi.org/10.1186/ s13317-019-0117-5

Bahar, R. C., Merkaj, S., Cassinelli Petersen, G. I., Tillmanns, N., Subramanian, H., Brim, W. R., Zeevi, T., Staib, L., Kazarian, E., Lin, M., Bousabarah, K., Huttner, A. J., Pala, A., Payabvash, S., Ivanidze, J., Cui, J., Malhotra, A., & Aboian, M. S. (2022). Machine Learning Models for Classifying Highand Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis. Frontiers in Oncology, 12, 856231. https://doi.org/10.3389/fonc.2022.856231

Bar, A., Mauda, M., Turner, Y., Safadi, M., & Elnekave, E. (2019). Improved ICH classification using task-dependent learning. In arXiv [cs.CV]. arXiv. https://uploads-ssl.webflow. com/602a32732226833dce680ffe/61733c14eabf6d96471c5 2b4_7-Bar_bloodNet__Improved_ICH_classification_using_task_ dependent_learning__isbi2018.pdf

Battineni, G., Chintalapudi, N., Hossain, M. A., Losco, G., Ruocco, C., Sagaro, G. G., Traini, E., Nittari, G., & Amenta, F. (2022). Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review. Bioengineering (Basel, Switzerland), 9(8). https://doi.org/10.3390/ bioengineering9080370

Bendfeldt, K., Taschler, B., Gaetano, L., Madoerin, P., Kuster, P., Mueller-Lenke, N., Amann, M., Vrenken, H., Wottschel, V., Barkhof, F., Borgwardt, S., Klöppel, S., Wicklein, E.- M., Kappos, L., Edan, G., Freedman, M. S., Montalbán, X., Hartung, H.-P., Pohl, C., … Nichols, T. E. (2019). MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry. Brain Imaging and Behavior, 13(5), 1361–1374. https://doi.org/10.1007/s11682-018-9942-9

BioMind. (n.d.). Retrieved December 20, 2022, from https://biomind.ai/paper

Birenbaum, A., & Greenspan, H. (2017). Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Engineering Applications of Artificial Intelligence, 65, 111–118. https://doi.org/10.1016/j.engappai.2017.06.006

Boldsen, J. K., Engedal, T. S., Pedraza, S., Cho, T.-H., Thomalla, G., Nighoghossian, N., Baron, J.-C., Fiehler, J., Østergaard, L., & Mouridsen, K. (2018). Better Diffusion Segmentation in Acute Ischemic Stroke Through Automatic Tree Learning Anomaly Segmentation. Frontiers in Neuroinformatics, 12, 21. https://doi.org/10.3389/fninf.2018.00021

Bonacchi, R., Filippi, M., & Rocca, M. A. (2022). Role of artificial intelligence in MS clinical practice. NeuroImage. Clinical, 35, 103065. https://doi.org/10.1016/j.nicl.2022.103065

Bonacchi, R., Pagani, E., Meani, A., Cacciaguerra, L., Preziosa, P., De Meo, E., Filippi, M., & Rocca, M. A. (2020). Clinical Relevance of Multiparametric MRI Assessment of Cervical Cord Damage in Multiple Sclerosis. Radiology, 296(3), 605–615. https://doi.org/10.1148/radiol.2020200430

Boutet, A., Madhavan, R., Elias, G. J. B., Joel, S. E., Gramer, R., Ranjan, M., Paramanandam, V., Xu, D., Germann, J., Loh, A., Kalia, S. K., Hodaie, M., Li, B., Prasad, S., Coblentz, A., Munhoz, R. P., Ashe, J., Kucharczyk, W., Fasano, A., & Lozano, A. M. (2021). Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nature Communications, 12(1), 3043. https://doi.org/10.1038/s41467-021-23311-9

Broderick, J., Connolly, S., Feldmann, E., Hanley, D., Kase, C., Krieger, D., Mayberg, M., Morgenstern, L., Ogilvy, C. S., Vespa, P., Zuccarello, M., American Heart Association, American Stroke Association Stroke Council, High Blood Pressure Research Council, & Quality of Care and Outcomes in Research Interdisciplinary Working Group. (2007). Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Stroke; a Journal of Cerebral Circulation, 38(6), 2001–2023. https://doi.org/10.1161/STROKEAHA.107.183689

Bron, E. E., Smits, M., Niessen, W. J., & Klein, S. (2015). Feature Selection Based on the SVM Weight Vector for Classification of Dementia. IEEE Journal of Biomedical and Health Informatics, 19(5), 1617–1626. https://doi.org/10.1109/ JBHI.2015.2432832

Brosch, T., Tang, L. Y. W., Youngjin Yoo, Li, D. K. B., Traboulsee, A., & Tam, R. (2016). Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation. IEEE Transactions on Medical Imaging, 35(5), 1229–1239. https://doi.org/10.1109/TMI.2016.2528821

Cacciaguerra, L., Meani, A., Mesaros, S., Radaelli, M., Palace, J., Dujmovic-Basuroski, I., Pagani, E., Martinelli, V., Matthews, L., Drulovic, J., Leite, M. I., Comi, G., Filippi, M., & Rocca, M. A. (2019). Brain and cord imaging features in neuromyelitis optica spectrum disorders. Annals of Neurology, 85(3), 371–384. https://doi.org/10.1002/ana.25411

Cavedo, E., Tran, P., Thoprakarn, U., Martini, J.-B., Movschin, A., Delmaire, C., Gariel, F., Heidelberg, D., Pyatigorskaya, N., Ströer, S., Krolak-Salmon, P., Cotton, F., Dos Santos, C. L., & Dormont, D. (2022). Validation of an automatic tool for the rapid measurement of brain atrophy and white matter hyperintensity: QyScore®. European Radiology, 32(5), 2949–2961. https://doi.org/10.1007/s00330-021-08385-9

Chakraborty, S., Aich, S., & Kim, H.-C. (2020). Detection of Parkinson’s Disease from 3T T1 Weighted MRI Scans Using 3D Convolutional Neural Network. Diagnostics, 10(6), 402. https://doi.org/10.3390/diagnostics10060402

Chalela, J. A., Kidwell, C. S., Nentwich, L. M., Luby, M., Butman, J. A., Demchuk, A. M., Hill, M. D., Patronas, N., Latour, L., & Warach, S. (2007). Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. The Lancet, 369(9558), 293–298. <https://doi.org/10.1016/S0140- 6736(07)60151-2

Chang, P. D., Chow, D. S., Yang, P. H., Filippi, C. G., & Lignelli, A. (2017). Predicting Glioblastoma Recurrence by Early Changes in the Apparent Diffusion Coefficient Value and Signal Intensity on FLAIR Images. AJR. American Journal of Roentgenology, 208(1), 57–65. https://doi.org/10.2214/AJR.16.16234

Chang, P. D., Malone, H. R., Bowden, S. G., Chow, D. S., Gill, B. J. A., Ung, T. H., Samanamud, J., Englander, Z. K., Sonabend, A. M., Sheth, S. A., McKhann, G. M., 2nd, Sisti, M. B., Schwartz, L. H., Lignelli, A., Grinband, J., Bruce, J. N., & Canoll, P. (2017). A Multiparametric Model for Mapping Cellularity in Glioblastoma Using Radiographically Localized Biopsies. AJNR. American Journal of Neuroradiology, 38(5), 890–898. https://doi.org/10.3174/ajnr.A5112

Chang, P., Grinband, J., Weinberg, B. D., Bardis, M., Khy, M., Cadena, G., Su, M.-Y., Cha, S., Filippi, C. G., Bota, D., Baldi, P., Poisson, L. M., Jain, R., & Chow, D. (2018). Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. AJNR. American Journal of Neuroradiology, 39(7), 1201–1207. https://doi.org/10.3174/ajnr.A5667

Cherubini, A., Morelli, M., Nisticó, R., Salsone, M., Arabia, G., Vasta, R., Augimeri, A., Caligiuri, M. E., & Quattrone, A. (2014). Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy. Movement Disorders: Official Journal of the Movement Disorder Society, 29(2), 266–269. https://doi.org/10.1002/mds.25737

Chien, H.-W. C., Yang, T.-L., Juang, W.-C., Chen, Y.-Y. A., Li, Y.-C. J., & Chen, C.-Y. (2022). Pilot Report for Intracranial Hemorrhage Detection with Deep Learning Implanted Head Computed Tomography Images at Emergency Department. Journal of Medical Systems, 46(7), 49. https://doi.org/10.1007/ s10916-022-01833-z

Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venugopal, V. K., Mahajan, V., Rao, P., & Warier, P. (2018). Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet, 392(10162), 2388–2396. https://doi.org/10.1016/S0140- 6736(18)31645-3

Choi, H., Ha, S., Im, H. J., Paek, S. H., & Lee, D. S. (2017). Refining diagnosis of Parkinson’s disease with deep learningbased interpretation of dopamine transporter imaging. NeuroImage. Clinical, 16, 586–594. https://doi.org/10.1016/j. nicl.2017.09.010

Connor, S. E. J., Tan, G., Fernando, R., & Chaudhury, N. (2005). Computed tomography pseudofractures of the mid face and skull base. Clinical Radiology, 60(12), 1268–1279. https://doi. org/10.1016/j.crad.2005.05.016

Crous-Bou, M., Minguillón, C., Gramunt, N., & Molinuevo, J. L. (2017). Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimer’s Research & Therapy, 9(1), 1–9. https://doi.org/10.1186/s13195-017-0297-z

Danelakis, A., Theoharis, T., & Verganelakis, D. A. (2018). Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 70, 83–100. https://doi.org/10.1016/j.compmedimag.2018.10.002

Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. M. (2008). Individual patient diagnosis of AD and FTD via highdimensional pattern classification of MRI. NeuroImage, 41(4), 1220–1227. https://doi.org/10.1016/j.neuroimage.2008.03.050

Dehkharghani, S., Lansberg, M., Venkatsubramanian, C., Cereda, C., Lima, F., Coelho, H., Rocha, F., Qureshi, A., Haerian, H., Mont’Alverne, F., Copeland, K., & Heit, J. (2021). High-Performance Automated Anterior Circulation CT Angiographic Clot Detection in Acute Stroke: A Multireader Comparison. Radiology, 298(3), 665–670. https://doi.org/10.1148/radiol.2021202734

Deshpande, H., Maurel, P., & Barillot, C. (2015). Classification of multiple sclerosis lesions using adaptive dictionary learning. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 46 Pt 1 , 2–10. https://doi.org/10.1016/j.compmedimag.2015.05.003

Dolz, J., Desrosiers, C., & Ben Ayed, I. (2018). 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study. NeuroImage, 170 , 456–470. https://doi.org/10.1016/j.neuroimage.2017.04.039

Duchesne, S., Rolland, Y., & Vérin, M. (2009). Automated computer differential classification in Parkinsonian Syndromes via pattern analysis on MRI. Academic Radiology, 16(1), 61–70. https://doi.org/10.1016/j.acra.2008.05.024

Duvekot, M. H. C., van Es, A. C. G. M., Venema, E., Wolff, L., Rozeman, A. D., Moudrous, W., Vermeij, F. H., Lingsma, H. F., Bakker, J., Plaisier, A. S., Hensen, J.-H. J., Lycklama à Nijeholt, G. J., Jan van Doormaal, P., Dippel, D. W. J., Kerkhoff, H., Roozenbeek, B., & van der Lugt, A. (2021). Accuracy of CTA evaluations in daily clinical practice for large and medium vessel occlusion detection in suspected stroke patients. European Stroke Journal, 23969873211058576. https:// doi.org/10.1177/23969873211058576

Ebinger, M., Galinovic, I., Rozanski, M., Brunecker, P., Endres, M., & Fiebach, J. B. (2010). Fluid-attenuated inversion recovery evolution within 12 hours from stroke onset: a reliable tissue clock? Stroke; a Journal of Cerebral Circulation, 41(2), 250–255. https://doi.org/10.1161/STROKEAHA.109.568410

Eichinger, P., Zimmer, C., & Wiestler, B. (2020). AI in Radiology: Where are we today in Multiple Sclerosis Imaging? RoFo: Fortschritte Auf Dem Gebiete Der Rontgenstrahlen Und Der Nuklearmedizin, 192(9), 847–853. https://doi.org/10.1055/a-1167-8402

Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., Kuchling, J., Asseyer, S., Weygandt, M., Haynes, J.-D., Scheel, M., Paul, F., & Ritter, K. (2019). Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layerwise relevance propagation. NeuroImage. Clinical, 24, 102003. https://doi.org/10.1016/j.nicl.2019.102003

EkŞİ, Z., ÇakiroĞlu, M., Öz, C., AralaŞmak, A., Karadelİ, H. H., & Özcan, M. E. (2020). Differentiation of relapsing-remitting and secondary progressive multiple sclerosis: a magnetic resonance spectroscopy study based on machine learning. Arquivos de Neuro-Psiquiatria, 78(12), 789–796. https://doi. org/10.1590/0004-282X20200094

Ekşi, Z., Özcan, M. E., Çakıroğlu, M., Öz, C., & Aralaşmak, A. (2021). Differentiation of multiple sclerosis lesions and lowgrade brain tumors on MRS data: machine learning approaches. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 42(8), 3389–3395. https://doi.org/10.1007/s10072-020-04950-0

Eldaya, R. W., Kansagra, A. P., Zei, M., Mason, E., Holder, D., Heitsch, L., Vo, K. D., & Goyal, M. S. (2022). Performance of Automated RAPID Intracranial Hemorrhage Detection in Real-World Practice: A Single-Institution Experience. Journal of Computer Assisted Tomography, 46(5), 770–774. https://doi.org/10.1097/RCT.0000000000001335

Emon, M. M., Ornob, T. R., & Rahman, M. (2022). Classifications of Skull Fractures using CT Scan Images via CNN with Lazy Learning Approach. In arXiv [eess.IV]. arXiv. http://arxiv.org/abs/2203.10786

Erly, W. K., Berger, W. G., Krupinski, E., Seeger, J. F., & Guisto, J. A. (2002). Radiology resident evaluation of head CT scan orders in the emergency department. AJNR. American Journal of Neuroradiology, 23 (1), 103–107. https://www.ncbi.nlm.nih.gov/ pubmed/11827881

Eshaghi, A., Wottschel, V., Cortese, R., Calabrese, M., Sahraian, M. A., Thompson, A. J., Alexander, D. C., & Ciccarelli, O. (2016). Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology, 87(23), 2463–2470. https://doi.org/10.1212/ WNL.0000000000003395

Feigin, V. L., Vos, T., Nichols, E., Owolabi, M. O., Carroll, W. M., Dichgans, M., Deuschl, G., Parmar, P., Brainin, M., & Murray, C. (2020). The global burden of neurological disorders: translating evidence into policy. Lancet Neurology, 19(3), 255–265. https://doi.org/10.1016/S1474-4422(19)30411-9

Ferreti, L. A., Leitao, C. A., Teixeira, B. C. de A., Lopes Neto, F. D. N., ZÉtola, V. F., & Lange, M. C. (2020). The use of e-ASPECTS in acute stroke care: validation of method performance compared to the performance of specialists. Arquivos de Neuro- Psiquiatria, 78(12), 757–761. https://doi.org/10.1590/0004- 282X20200072

Filippi, M., Preziosa, P., Copetti, M., Riccitelli, G., Horsfield, M. A., Martinelli, V., Comi, G., & Rocca, M. A. (2013). Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology, 81(20), 1759–1767. https://doi.org/10.1212/01.wnl.0000435551.90824.d0

Flacke, S., Urbach, H., Keller, E., Träber, F., Hartmann, A., Textor, J., Gieseke, J., Block, W., Folkers, P. J., & Schild, H. H. (2000). Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology, 215(2), 476–482. https://doi.org/10.1148/ radiology.215.2.r00ma09476

Focke, N. K., Helms, G., Scheewe, S., Pantel, P. M., Bachmann, C. G., Dechent, P., Ebentheuer, J., Mohr, A., Paulus, W., & Trenkwalder, C. (2011). Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Human Brain Mapping, 32(11), 1905–1915. https://doi.org/10.1002/hbm.21161

Fugate, J. E., & Rabinstein, A. A. (2015). Absolute and Relative Contraindications to IV rt-PA for Acute Ischemic Stroke. The Neurohospitalist, 5(3), 110–121. https://doi. org/10.1177/1941874415578532

Gács, G., Fox, A. J., Barnett, H. J., & Vinuela, F. (1983). CT visualization of intracranial arterial thromboembolism. Stroke; a Journal of Cerebral Circulation, 14(5), 756–762. https://doi. org/10.1161/01.str.14.5.756

GBD 2016 Parkinson’s Disease Collaborators. (2018). Global, regional, and national burden of Parkinson’s disease, 1990- 2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 17(11), 939–953. https://doi. org/10.1016/S1474-4422(18)30295-3

Gibson, E., Georgescu, B., Ceccaldi, P., Trigan, P.-H., Yoo, Y., Das, J., Re, T. J., Rs, V., Balachandran, A., Eibenberger, E., Chekkoury, A., Brehm, B., Bodanapally, U. K., Nicolaou, S., Sanelli, P. C., Schroeppel, T. J., Flohr, T., Comaniciu, D., & Lui, Y. W. (2022). Artificial Intelligence with Statistical Confidence Scores for Detection of Acute or Subacute Hemorrhage on Noncontrast CT Head Scans. Radiology. Artificial Intelligence, 4(3), e210115. https://doi.org/10.1148/ryai.210115

Ginat, D. (2021). Implementation of Machine Learning Software on the Radiology Worklist Decreases Scan View Delay for the Detection of Intracranial Hemorrhage on CT. Brain Sciences, 11(7). https://doi.org/10.3390/brainsci11070832

Goebel, J., Stenzel, E., Guberina, N., Wanke, I., Koehrmann, M., Kleinschnitz, C., Umutlu, L., Forsting, M., Moenninghoff, C., & Radbruch, A. (2018). Automated ASPECT rating: comparison between the Frontier ASPECT Score software and the Brainomix software. Neuroradiology, 60(12), 1267–1272. https://doi.org/10.1007/s00234-018-2098-x

Goldberg-Zimring, D., Achiron, A., Miron, S., Faibel, M., & Azhari, H. (1998). Automated detection and characterization of multiple sclerosis lesions in brain MR images. Magnetic Resonance Imaging, 16(3), 311–318. https://doi.org/10.1016/ s0730-725x(97)00300-7

Guberina, N., Dietrich, U., Radbruch, A., Goebel, J., Deuschl, C., Ringelstein, A., Köhrmann, M., Kleinschnitz, C., Forsting, M., & Mönninghoff, C. (2018). Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology, 60(9), 889–901. https://doi.org/10.1007/ s00234-018-2066-5

Hakim, A., Christensen, S., Winzeck, S., Lansberg, M. G., Parsons, M. W., Lucas, C., Robben, D., Wiest, R., Reyes, M., & Zaharchuk, G. (2021). Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge. Stroke; a Journal of Cerebral Circulation, 52(7), 2328–2337. https://doi.org/10.1161/STROKEAHA.120.030696

Haller, S., Badoud, S., Nguyen, D., Barnaure, I., Montandon, M.-L., Lovblad, K.-O., & Burkhard, P. R. (2013). Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibilityweighted imaging (SWI): initial results. European Radiology, 23(1), 12–19. https://doi.org/10.1007/s00330-012-2579-y

Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K. O., & Burkhard, P. R. (2012). Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR. American Journal of Neuroradiology, 33(11), 2123–2128. https://doi.org/10.3174/ajnr.A3126

Han, L., & Kamdar, M. R. (2018). MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 23, 331–342. https://www.ncbi.nlm.nih.gov/pubmed/29218894

Han, Y., Yang, Y., Shi, Z.-S., Zhang, A.-D., Yan, L.-F., Hu, Y.-C., Feng, L.-L., Ma, J., Wang, W., & Cui, G.-B. (2021). Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI. European Journal of Radiology, 134, 109467. https://doi.org/10.1016/j.ejrad.2020.109467

Hassan, A. E., Ringheanu, V. M., Rabah, R. R., Preston, L., Tekle, W. G., & Qureshi, A. I. (2020). Early experience utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a hub and spoke model. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology, Surgical Procedures and Related Neurosciences, 26(5), 615–622. https://doi.org/10.1177/1591019920953055

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., & Larochelle, H. (2017). Brain tumor segmentation with Deep Neural Networks. Medical Image Analysis, 35, 18–31. https://doi.org/10.1016/j.media.2016.05.004

Heimer, J., Thali, M. J., & Ebert, L. (2018). Classification based on the presence of skull fractures on curved maximum intensity skull projections by means of deep learning. Journal of Forensic Radiology and Imaging, 14, 16–20. https://doi.org/10.1016/j. jofri.2018.08.001

Heit, J. J., Coelho, H., Lima, F. O., Granja, M., Aghaebrahim, A., Hanel, R., Kwok, K., Haerian, H., Cereda, C. W., Venkatasubramanian, C., Dehkharghani, S., Carbonera, L. A., Wiener, J., Copeland, K., & Mont’Alverne, F. (2021). Automated Cerebral Hemorrhage Detection Using RAPID. AJNR. American Journal of Neuroradiology, 42(2), 273–278. https://doi.org/10.3174/ajnr.A6926

Herweh, C., Ringleb, P. A., Rauch, G., Gerry, S., Behrens, L., Möhlenbruch, M., Gottorf, R., Richter, D., Schieber, S., & Nagel, S. (2016). Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients. International Journal of Stroke: Official Journal of the International Stroke Society, 11(4), 438–445. https://doi.org/10.1177/1747493016632244

Hirschauer, T. J., Adeli, H., & Buford, J. A. (2015). Computer- Aided Diagnosis of Parkinson’s Disease Using Enhanced Probabilistic Neural Network. Journal of Medical Systems, 39(11), 179. https://doi.org/10.1007/s10916-015-0353-9

Hitziger, S., Ling, W. X., Fritz, T., D’Albis, T., Lemke, A., & Grilo, J. (2022). Triplanar U-Net with lesion-wise voting for the segmentation of new lesions on longitudinal MRI studies. Frontiers in Neuroscience, 16, 964250. https://doi.org/10.3389/ fnins.2022.964250

Hoelter, P., Muehlen, I., Goelitz, P., Beuscher, V., Schwab, S., & Doerfler, A. (2020). Automated ASPECT scoring in acute ischemic stroke: comparison of three software tools. Neuroradiology, 62(10), 1231–1238. https://doi.org/10.1007/ s00234-020-02439-3

Hu, L. S., Ning, S., Eschbacher, J. M., Baxter, L. C., Gaw, N., Ranjbar, S., Plasencia, J., Dueck, A. C., Peng, S., Smith, K. A., Nakaji, P., Karis, J. P., Quarles, C. C., Wu, T., Loftus, J. C., Jenkins, R. B., Sicotte, H., Kollmeyer, T. M., O’Neill, B. P., … Mitchell, J. R. (2017). Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro-Oncology, 19(1), 128–137. https://doi.org/10.1093/neuonc/now135

Huppertz, H.-J., Möller, L., Südmeyer, M., Hilker, R., Hattingen, E., Egger, K., Amtage, F., Respondek, G., Stamelou, M., Schnitzler, A., Pinkhardt, E. H., Oertel, W. H., Knake, S., Kassubek, J., & Höglinger, G. U. (2016). Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Movement Disorders: Official Journal of the Movement Disorder Society, 31(10), 1506– 1517. https://doi.org/10.1002/mds.26715

Hwang, D. Y., Silva, G. S., Furie, K. L., & Greer, D. M. (2012). Comparative sensitivity of computed tomography vs. magnetic resonance imaging for detecting acute posterior fossa infarct. The Journal of Emergency Medicine, 42(5), 559–565. https://doi. org/10.1016/j.jemermed.2011.05.101

Ion-Mărgineanu, A., Kocevar, G., Stamile, C., Sima, D. M., Durand-Dubief, F., Van Huffel, S., & Sappey-Marinier, D. (2017). Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features. Frontiers in Neuroscience, 11, 398. https://doi.org/10.3389/fnins.2017.00398

Jain, A., Malhotra, A., & Payabvash, S. (2021). Imaging of Spontaneous Intracerebral Hemorrhage. Neuroimaging Clinics of North America, 31(2), 193–203. https://doi.org/10.1016/j. nic.2021.02.003

Jain, S., Ribbens, A., Sima, D. M., Cambron, M., De Keyser, J., Wang, C., Barnett, M. H., Van Huffel, S., Maes, F., & Smeets, D. (2016). Two Time Point MS Lesion Segmentation in Brain MRI: An Expectation-Maximization Framework. Frontiers in Neuroscience, 10, 576. https://doi.org/10.3389/fnins.2016.00576

Jang, B.-S., Jeon, S. H., Kim, I. H., & Kim, I. A. (2018). Prediction of Pseudoprogression versus Progression using Machine Learning Algorithm in Glioblastoma. Scientific Reports, 8(1), 12516. https://doi.org/10.1038/s41598-018-31007-2

Jang, B.-S., Park, A. J., Jeon, S. H., Kim, I. H., Lim, D. H., Park, S.-H., Lee, J. H., Chang, J. H., Cho, K. H., Kim, J. H., Sunwoo, L., Choi, S. H., & Kim, I. A. (2020). Machine Learning Model to Predict Pseudoprogression Versus Progression in Glioblastoma Using MRI: A Multi-Institutional Study (KROG 18-07). Cancers, 12(9). https://doi.org/10.3390/cancers12092706Cancers, 12(9). https://doi.org/10.3390/cancers12092706

Jayachandran Preetha, C., Meredig, H., Brugnara, G., Mahmutoglu, M. A., Foltyn, M., Isensee, F., Kessler, T., Pflüger, I., Schell, M., Neuberger, U., Petersen, J., Wick, A., Heiland, S., Debus, J., Platten, M., Idbaih, A., Brandes, A. A., Winkler, F., van den Bent, M. J., … Vollmuth, P. (2021). Deeplearning- based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. The Lancet. Digital Health, 3(12), e784–e794. https://doi.org/10.1016/S2589-7500(21)00205-3

Jiang, L., Wang, S., Ai, Z., Shen, T., Zhang, H., Duan, S., Chen, Y.-C., Yin, X., & Sun, J. (2022). Development and external validation of a stability machine learning model to identify wake-up stroke onset time from MRI. European Radiology, 32(6), 3661–3669. https://doi.org/10.1007/s00330-021-08493-6

Kanber, B., Nachev, P., Barkhof, F., Calvi, A., Cardoso, J., Cortese, R., Prados, F., Sudre, C. H., Tur, C., Ourselin, S., & Ciccarelli, O. (2019). High-dimensional detection of imaging response to treatment in multiple sclerosis. NPJ Digital Medicine, 2, 49. https://doi.org/10.1038/s41746-019-0127-8

Karimian, A., & Jafari, S. (2015). A New Method to Segment the Multiple Sclerosis Lesions on Brain Magnetic Resonance Images. Journal of Medical Signals and Sensors, 5(4), 238–244. https:// www.ncbi.nlm.nih.gov/pubmed/26955567

Kickingereder, P., Bonekamp, D., Nowosielski, M., Kratz, A., Sill, M., Burth, S., Wick, A., Eidel, O., Schlemmer, H.-P., Radbruch, A., Debus, J., Herold-Mende, C., Unterberg, A., Jones, D., Pfister, S., Wick, W., von Deimling, A., Bendszus, M., & Capper, D. (2016). Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features. Radiology, 281(3), 907–918. https://doi. org/10.1148/radiol.2016161382

Kickingereder, P., Isensee, F., Tursunova, I., Petersen, J., Neuberger, U., Bonekamp, D., Brugnara, G., Schell, M., Kessler, T., Foltyn, M., Harting, I., Sahm, F., Prager, M., Nowosielski, M., Wick, A., Nolden, M., Radbruch, A., Debus, J., Schlemmer, H.-P., … Maier-Hein, K. H. (2019). Automated quantitative tumour response assessment of MRI in neurooncology with artificial neural networks: a multicentre, retrospective study. The Lancet Oncology, 20(5), 728–740. https://doi.org/10.1016/S1470-2045(19)30098-1

Kim, B. J., Kim, Y.-H., Kim, Y.-J., Ahn, S. H., Lee, D. H., Kwon, S. U., Kim, S. J., Kim, J. S., & Kang, D.-W. (2014). Color-coded fluid-attenuated inversion recovery images improve inter-rater reliability of fluid-attenuated inversion recovery signal changes within acute diffusion-weighted image lesions. Stroke; a Journal of Cerebral Circulation, 45(9), 2801–2804. https://doi.org/10.1161/STROKEAHA.114.006515

Kim, J. Y., Park, J. E., Jo, Y., Shim, W. H., Nam, S. J., Kim, J. H., Yoo, R.-E., Choi, S. H., & Kim, H. S. (2019). Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro-Oncology, 21(3), 404–414. https://doi.org/10.1093/neuonc/noy133

Kim, M., Kim, H. S., Kim, H. J., Park, J. E., Park, S. Y., Kim, Y.- H., Kim, S. J., Lee, J., & Lebel, M. R. (2021). Thin-Slice Pituitary MRI with Deep Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology, 298(1), 114–122. https://doi.org/10.1148/radiol.2020200723

Kniep, H. C., Madesta, F., Schneider, T., Hanning, U., Schönfeld, M. H., Schön, G., Fiehler, J., Gauer, T., Werner, R., & Gellissen, S. (2019). Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type. Radiology, 290(2), 479–487. https://doi.org/10.1148/radiol.2018180946

Kniep, H. C., Sporns, P. B., Broocks, G., Kemmling, A., Nawabi, J., Rusche, T., Fiehler, J., & Hanning, U. (2020). Posterior circulation stroke: machine learning-based detection of early ischemic changes in acute non-contrast CT scans. Journal of Neurology, 267(9), 2632–2641. https://doi. org/10.1007/s00415-020-09859-4

Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021). Alzheimer disease. Nature Reviews. Disease Primers, 7(1), 33. https://doi.org/10.1038/s41572-021-00269-y

Kocevar, G., Stamile, C., Hannoun, S., Cotton, F., Vukusic, S., Durand-Dubief, F., & Sappey-Marinier, D. (2016). Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses. Frontiers in Neuroscience, 10, 478. https://doi.org/10.3389/fnins.2016.00478

Kouli, O., Hassane, A., Badran, D., Kouli, T., Hossain-Ibrahim, K., & Steele, J. D. (2022). Automated brain tumor identification using magnetic resonance imaging: A systematic review and meta-analysis. Neuro-Oncology Advances, 4(1), vdac081. https:// doi.org/10.1093/noajnl/vdac081

Kuang, H., Najm, M., Chakraborty, D., Maraj, N., Sohn, S. I., Goyal, M., Hill, M. D., Demchuk, A. M., Menon, B. K., & Qiu, W. (2019). Automated ASPECTS on Noncontrast CT Scans in Patients with Acute Ischemic Stroke Using Machine Learning. AJNR. American Journal of Neuroradiology, 40(1), 33–38. https://doi.org/10.3174/ajnr.A5889

Kuang, Z., Deng, X., Yu, L., Zhang, H., Lin, X., & Ma, H. (2020). Skull R-CNN: A CNN-based network for the skull fracture detection. In T. Arbel, I. Ben Ayed, M. de Bruijne, M. Descoteaux, H. Lombaert, & C. Pal (Eds.), Proceedings of the Third Conference on Medical Imaging with Deep Learning (Vol. 121, pp. 382–392). PMLR. https://proceedings.mlr.press/v121/kuang20a.html

Kushibar, K., Valverde, S., González-Villà, S., Bernal, J., Cabezas, M., Oliver, A., & Lladó, X. (2018). Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features. Medical Image Analysis, 48, 177–186. https://doi.org/10.1016/j.media.2018.06.006

Lamptey, R. N. L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B., & Singh, J. (2022). A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. International Journal of Molecular Sciences, 23(3). https://doi.org/10.3390/ ijms23031851

Leao, D. J., Craig, P. G., Godoy, L. F., Leite, C. C., & Policeni, B. (2020). Response Assessment in Neuro-Oncology Criteria for Gliomas: Practical Approach Using Conventional and Advanced Techniques. AJNR. American Journal of Neuroradiology, 41(1), 10–20. https://doi.org/10.3174/ajnr.A6358

Lebedev, A. V., Westman, E., Van Westen, G. J. P., Kramberger, M. G., Lundervold, A., Aarsland, D., Soininen, H., Kłoszewska, I., Mecocci, P., Tsolaki, M., Vellas, B., Lovestone, S., Simmons, A., & Alzheimer’s Disease Neuroimaging Initiative and the AddNeuroMed consortium. (2014). Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage. Clinical, 6, 115–125. https://doi.org/10.1016/j. nicl.2014.08.023

Lee, D. H., Park, J. E., Nam, Y. K., Lee, J., Kim, S., Kim, Y.-H., & Kim, H. S. (2021). Deep learning-based thin-section MRI reconstruction improves tumour detection and delineation in pre- and post-treatment pituitary adenoma. Scientific Reports, 11(1), 21302. https://doi.org/10.1038/s41598-021-00558-2

Lee, G., Nho, K., Kang, B., Sohn, K.-A., Kim, D., & for Alzheimer’s Disease Neuroimaging Initiative. (2019). Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Scientific Reports, 9(1), 1952. https://doi.org/10.1038/s41598-018-37769-z

Lee, H., Lee, E.-J., Ham, S., Lee, H.-B., Lee, J. S., Kwon, S. U., Kim, J. S., Kim, N., & Kang, D.-W. (2020). Machine Learning Approach to Identify Stroke Within 4.5 Hours. Stroke; a Journal of Cerebral Circulation, 51(3), 860–866. https://doi.org/10.1161/ STROKEAHA.119.027611

Lisowska, A., O’Neil, A., Dilys, V., Daykin, M., Beveridge, E., Muir, K., Mclaughlin, S., & Poole, I. (2017). Context-Aware Convolutional Neural Networks for Stroke Sign Detection in Noncontrast CT Scans. Medical Image Understanding and Analysis, 494–505. https://doi.org/10.1007/978-3-319-60964-5_43

Long, D., Wang, J., Xuan, M., Gu, Q., Xu, X., Kong, D., & Zhang, M. (2012). Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PloS One, 7(11), e47714. https://doi.org/10.1371/journal.pone.0047714

Lopatina, A., Ropele, S., Sibgatulin, R., Reichenbach, J. R., & Güllmar, D. (2020). Investigation of Deep-Learning- Driven Identification of Multiple Sclerosis Patients Based on Susceptibility-Weighted Images Using Relevance Analysis. Frontiers in Neuroscience, 14, 609468. https://doi.org/10.3389/ fnins.2020.609468

Lublin, F. D., Reingold, S. C., Cohen, J. A., Cutter, G. R., Sørensen, P. S., Thompson, A. J., Wolinsky, J. S., Balcer, L. J., Banwell, B., Barkhof, F., Bebo, B., Jr, Calabresi, P. A., Clanet, M., Comi, G., Fox, R. J., Freedman, M. S., Goodman, A. D., Inglese, M., Kappos, L., … Polman, C. H. (2014). Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology, 83(3), 278–286. https://doi.org/10.1212/ WNL.0000000000000560

Lu, D., Popuri, K., Ding, G. W., Balachandar, R., Beg, M. F., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer’s Disease using structural MR and FDG-PET images. Scientific Reports, 8(1), 5697. https://doi. org/10.1038/s41598-018-22871-z

Mackey J, Kleindorfer D, Sucharew H, et al. Population-based study of wake-up strokes. Neurology. 2011;76(19):1662-1667. doi:10.1212/WNL.0b013e318219fb30

Maegerlein, C., Fischer, J., Mönch, S., Berndt, M., Wunderlich, S., Seifert, C. L., Lehm, M., Boeckh-Behrens, T., Zimmer, C., & Friedrich, B. (2019). Automated Calculation of the Alberta Stroke Program Early CT Score: Feasibility and Reliability. Radiology, 291(1), 141–148. https://doi.org/10.1148/ radiol.2019181228

Mangeat, G., Ouellette, R., Wabartha, M., De Leener, B., Plattén, M., Danylaité Karrenbauer, V., Warntjes, M., Stikov, N., Mainero, C., Cohen-Adad, J., & Granberg, T. (2020). Machine Learning and Multiparametric Brain MRI to Differentiate Hereditary Diffuse Leukodystrophy with Spheroids from Multiple Sclerosis. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 30(5), 674–682. https://doi.org/10.1111/jon.12725

Marks, M. P., Holmgren, E. B., Fox, A. J., Patel, S., von Kummer, R., & Froehlich, J. (1999). Evaluation of early computed tomographic findings in acute ischemic stroke. Stroke; a Journal of Cerebral Circulation, 30(2), 389–392. https://doi.org/10.1161/01.str.30.2.389

Marquand, A. F., Filippone, M., Ashburner, J., Girolami, M., Mourao-Miranda, J., Barker, G. J., Williams, S. C. R., Leigh, P. N., & Blain, C. R. V. (2013). Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach. PloS One, 8(7), e69237. https://doi.org/10.1371/ journal.pone.0069237

Marzullo, A., Kocevar, G., Stamile, C., Durand-Dubief, F., Terracina, G., Calimeri, F., & Sappey-Marinier, D. (2019). Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks. Frontiers in Neuroscience, 13, 594. https://doi.org/10.3389/fnins.2019.00594

Matthews, P. M., Roncaroli, F., Waldman, A., Sormani, M. P., De Stefano, N., Giovannoni, G., & Reynolds, R. (2016). A practical review of the neuropathology and neuroimaging of multiple sclerosis. Practical Neurology, 16(4), 279–287. https://doi.org/10.1136/practneurol-2016-001381

McGinley, M. P., Goldschmidt, C. H., & Rae-Grant, A. D. (2021). Diagnosis and Treatment of Multiple Sclerosis: A Review.JAMA: The Journal of the American Medical Association, 325(8), 765–779. https://doi.org/10.1001/jama.2020.26858

McLouth, J., Elstrott, S., Chaibi, Y., Quenet, S., Chang, P. D., Chow, D. S., & Soun, J. E. (2021). Validation of a Deep Learning Tool in the Detection of Intracranial Hemorrhage and Large Vessel Occlusion. Frontiers in Neurology, 12, 656112. https://doi.org/10.3389/fneur.2021.656112

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.-A., Arbel, T., Avants, B. B., Ayache, N., Buendia, P., Collins, D. L., Cordier, N., … Van Leemput, K. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10), 1993–2024. https://doi.org/10.1109/ TMI.2014.2377694

Merkaj, S., Bahar, R. C., Zeevi, T., Lin, M., Ikuta, I., Bousabarah, K., Cassinelli Petersen, G. I., Staib, L., Payabvash, S., Mongan, J. T., Cha, S., & Aboian, M. S. (2022). Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities. Cancers, 14(11). https://doi.org/10.3390/cancers14112623

Moazami, F., Lefevre-Utile, A., Papaloukas, C., & Soumelis, V. (2021). Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images. Frontiers in Immunology, 12, 700582. https://doi.org/10.3389/ fimmu.2021.700582

Mohd Saad, N., Abdullah, A. R., Mohd Noor, N. S., & Mohd Ali, N. (2019). Automated Segmentation And Classification Technique For Brain Stroke. International Journal of Electrical, Computer, and Systems Engineering, 9(3), 1832–1841. https://doi.org/10.11591/ijece.v9i3.pp1832-1841

Mokin, M., Ansari, S. A., McTaggart, R. A., Bulsara, K. R., Goyal, M., Chen, M., Fraser, J. F., & Society of NeuroInterventional Surgery. (2019). Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): report of the SNIS Standards and Guidelines Committee. Journal of Neurointerventional Surgery, 11(3), 215–220. https://doi.org/10.1136/ neurintsurg-2018-014640

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage, 104, 398–412. https://doi.org/10.1016/j.neuroimage.2014.10.002

Morey, J. R., Zhang, X., Yaeger, K. A., Fiano, E., Marayati, N. F., Kellner, C. P., De Leacy, R. A., Doshi, A., Tuhrim, S., & Fifi, J. T. (2021). Real-World Experience with Artificial Intelligence- Based Triage in Transferred Large Vessel Occlusion Stroke Patients. Cerebrovascular Diseases, 50(4), 450–455. https://doi.org/10.1159/000515320

Murray, N. M., Unberath, M., Hager, G. D., & Hui, F. K. (2020). Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. Journal of Neurointerventional Surgery, 12(2), 156–164. https://doi.org/10.1136/neurintsurg-2019-015135

Nagel, S., Sinha, D., Day, D., Reith, W., Chapot, R., Papanagiotou, P., Warburton, E. A., Guyler, P., Tysoe, S., Fassbender, K., Walter, S., Essig, M., Heidenrich, J., Konstas, A. A., Harrison, M., Papadakis, M., Greveson, E., Joly, O., Gerry, S., … Grunwald, I. Q. (2017). e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. International Journal of Stroke: Official Journal of the International Stroke Society, 12(6), 615–622. https://doi. org/10.1177/1747493016681020

Nazari-Farsani, S., Nyman, M., Karjalainen, T., Bucci, M., Isojärvi, J., & Nummenmaa, L. (2020). Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI. Journal of Neuroscience Methods, 333, 108575. https://doi.org/10.1016/j. jneumeth.2019.108575

Neeb, H., & Schenk, J. (2019). Multivariate prediction of multiple sclerosis using robust quantitative MR-based image metrics. Zeitschrift Fur Medizinische Physik, 29(3), 262–271. https://doi.org/10.1016/j.zemedi.2018.10.004

Ocasio, E., & Duong, T. Q. (2021). Deep learning prediction of mild cognitive impairment conversion to Alzheimer’s disease at 3 years after diagnosis using longitudinal and whole-brain 3D MRI. PeerJ. Computer Science, 7, e560. https://doi.org/10.7717/ peerj-cs.560

Olive-Gadea, M., Crespo, C., Granes, C., Hernandez-Perez, M., Pérez de la Ossa, N., Laredo, C., Urra, X., Carlos Soler, J., Soler, A., Puyalto, P., Cuadras, P., Marti, C., & Ribo, M. (2020). Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography. Stroke; a Journal of Cerebral Circulation, 51(10), 3133–3137. https://doi.org/10.1161/ STROKEAHA.120.030326

Olive-Gadea, M., Martins, N., Boned, S., Carvajal, J., Moreno, M. J., Muchada, M., Molina, C. A., Tomasello, A., Ribo, M., & Rubiera, M. (2019). Baseline ASPECTS and e-ASPECTS Correlation with Infarct Volume and Functional Outcome in Patients Undergoing Mechanical Thrombectomy. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 29(2), 198–202. https://doi.org/10.1111/ jon.12564

Olthof, A. W., van Ooijen, P. M. A., & Rezazade Mehrizi, M. H. (2020). Promises of artificial intelligence in neuroradiology: a systematic technographic review. Neuroradiology, 62(10), 1265–1278. https://doi.org/10.1007/s00234-020-02424-w

Öman, O., Mäkelä, T., Salli, E., Savolainen, S., & Kangasniemi, M. (2019). 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. European Radiology Experimental, 3(1), 8. https://doi.org/10.1186/s41747-019-0085-6

Ozsahin, I., Sekeroglu, B., Pwavodi, P. C., & Mok, G. S. P. (2020). High-accuracy Automated Diagnosis of Parkinson’s Disease. Current Medical Imaging Reviews, 16(6), 688–694. https://doi.org/10.2174/1573405615666190620113607

Pagan, F. L. (2012). Improving outcomes through early diagnosis of Parkinson’s disease. The American Journal of Managed Care, 18(7 Suppl), S176–S182. https://www.ncbi.nlm. nih.gov/pubmed/23039866

Park, J. E., Kim, H. S., Park, S. Y., Nam, S. J., Chun, S.-M., Jo, Y., & Kim, J. H. (2020). Prediction of Core Signaling Pathway by Using Diffusion- and Perfusion-based MRI Radiomics and Next-generation Sequencing in Isocitrate Dehydrogenase Wildtype Glioblastoma. Radiology, 294(2), 388–397. https://doi. org/10.1148/radiol.2019190913

Peng, B., Wang, S., Zhou, Z., Liu, Y., Tong, B., Zhang, T., & Dai, Y. (2017). A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease. Neuroscience Letters, 651, 88–94. https://doi. org/10.1016/j.neulet.2017.04.034

Petersen, R. C. (2016). Mild Cognitive Impairment. Continuum, 22(2 Dementia), 404–418. https://doi.org/10.1212/CON.0000000000000313

Piccardo, A., Cappuccio, R., Bottoni, G., Cecchin, D., Mazzella, L., Cirone, A., Righi, S., Ugolini, M., Bianchi, P., Bertolaccini, P., Lorenzini, E., Massollo, M., Castaldi, A., Fiz, F., Strada, L., Cistaro, A., & Del Sette, M. (2021). The role of the deep convolutional neural network as an aid to interpreting brain [18F]DOPA PET/CT in the diagnosis of Parkinson’s disease. European Radiology, 31(9), 7003–7011. https://doi.org/10.1007/ s00330-021-07779-z

Pirson, F. A. V., Boodt, N., Brouwer, J., Bruggeman, A. A. E., den Hartog, S. J., Goldhoorn, R.-J. B., Langezaal, L. C. M., Staals, J., van Zwam, W. H., van der Leij, C., Brans, R. J. B., Majoie, C. B. L. M., Coutinho, J. M., Emmer, B. J., Dippel, D. W. J., van der Lugt, A., Vos, J.-A., van Oostenbrugge, R. J., Schonewille, W. J., & MR CLEAN Registry Investigators†. (2022). Endovascular Treatment for Posterior Circulation Stroke in Routine Clinical Practice: Results of the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands Registry. Stroke; a Journal of Cerebral Circulation, 53(3), 758–768. https://doi.org/10.1161/ STROKEAHA.121.034786

Pläschke, R. N., Cieslik, E. C., Müller, V. I., Hoffstaedter, F., Plachti, A., Varikuti, D. P., Goosses, M., Latz, A., Caspers, S., Jockwitz, C., Moebus, S., Gruber, O., Eickhoff, C. R., Reetz, K., Heller, J., Südmeyer, M., Mathys, C., Caspers, J., Grefkes, C., … Eickhoff, S. B. (2017). On the integrity of functional brain networks in schizophrenia, Parkinson’s disease, and advanced age: Evidence from connectivity-based single-subject classification. Human Brain Mapping, 38(12), 5845–5858. https://doi.org/10.1002/hbm.23763

Polson, J. S., Zhang, H., Nael, K., Salamon, N., Yoo, B. Y., El-Saden, S., Starkman, S., Kim, N., Kang, D.-W., Speier, W. F., 4th, & Arnold, C. W. (2022). Identifying acute ischemic stroke patients within the thrombolytic treatment window using deep learning. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging. https://doi.org/10.1111/jon.13043

Potreck, A., Weyland, C. S., Seker, F., Neuberger, U., Herweh, C., Hoffmann, A., Nagel, S., Bendszus, M., & Mutke, M. A. (2022). Accuracy and prognostic role of NCCT-ASPECTS depend on time from acute stroke symptom-onset for both human and machine-learning based evaluation. Clinical Neuroradiology, 32(1), 133–140. https://doi.org/10.1007/s00062-021-01110-5

Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., Biller, J., Brown, M., Demaerschalk, B. M., Hoh, B., Jauch, E. C., Kidwell, C. S., Leslie-Mazwi, T. M., Ovbiagele, B., Scott, P. A., Sheth, K. N., Southerland, A. M., Summers, D. V., & Tirschwell, D. L. (2018). 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke; a Journal of Cerebral Circulation, 49(3), e46–e110. https://doi.org/10.1161/STR.0000000000000158

Qiu, W., Kuang, H., Teleg, E., Ospel, J. M., Sohn, S. I., Almekhlafi, M., Goyal, M., Hill, M. D., Demchuk, A. M., & Menon, B. K. (2020). Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT. Radiology, 294(3), 638–644. https://doi.org/10.1148/ radiol.2020191193

Qubiotech. (2021, November 9). Qubiotech. https://qubiotech.com/en/resources/

Qureshi, A. I., Mendelow, A. D., & Hanley, D. F. (2009). Intracerebral haemorrhage. The Lancet, 373(9675), 1632–1644. https://doi.org/10.1016/S0140-6736(09)60371-8

Raimbault, A., Cazals, X., Lauvin, M.-A., Destrieux, C., Chapet, S., & Cottier, J.-P. (2014). Radionecrosis of malignant glioma and cerebral metastasis: a diagnostic challenge in MRI. Diagnostic and Interventional Imaging, 95(10), 985–1000. https:// doi.org/10.1016/j.diii.2014.06.013

Rao, B., Zohrabian, V., Cedeno, P., Saha, A., Pahade, J., & Davis, M. A. (2021). Utility of Artificial Intelligence Tool as a Prospective Radiology Peer Reviewer - Detection of Unreported Intracranial Hemorrhage. Academic Radiology, 28(1), 85–93. https://doi.org/10.1016/j.acra.2020.01.035

Rava, R. A., Peterson, B. A., Seymour, S. E., Snyder, K. V., Mokin, M., Waqas, M., Hoi, Y., Davies, J. M., Levy, E. I., Siddiqui, A. H., & Ionita, C. N. (2021). Validation of an artificial intelligence-driven large vessel occlusion detection algorithm for acute ischemic stroke patients. The Neuroradiology Journal, 34(5), 408–417. https://doi.org/10.1177/1971400921998952

Rava, R. A., Seymour, S. E., LaQue, M. E., Peterson, B. A., Snyder, K. V., Mokin, M., Waqas, M., Hoi, Y., Davies, J. M., Levy, E. I., Siddiqui, A. H., & Ionita, C. N. (2021). Assessment of an Artificial Intelligence Algorithm for Detection of Intracranial Hemorrhage. World Neurosurgery, 150, e209–e217. https://doi. org/10.1016/j.wneu.2021.02.134

Rezazade Mehrizi, M. H., van Ooijen, P., & Homan, M. (2021). Applications of artificial intelligence (AI) in diagnostic radiology: a technography study. European Radiology, 31(4), 1805–1811. https://doi.org/10.1007/s00330-020-07230-9

Rizzo, G., Copetti, M., Arcuti, S., Martino, D., Fontana, A., & Logroscino, G. (2016). Accuracy of clinical diagnosis of Parkinson disease: A systematic review and metaanalysis. Neurology, 86(6), 566–576. https://doi.org/10.1212/ WNL.0000000000002350

Roca, P., Attye, A., Colas, L., Tucholka, A., Rubini, P., Cackowski, S., Ding, J., Budzik, J.-F., Renard, F., Doyle, S., Barbier, E. L., Bousaid, I., Casey, R., Vukusic, S., Lassau, N., Verclytte, S., Cotton, F., OFSEP Investigators, Steering Committee, … Imaging group. (2020). Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI. Diagnostic and Interventional Imaging, 101(12), 795–802. https://doi.org/10.1016/j.diii.2020.05.009

Rocca, M. A., Anzalone, N., Storelli, L., Del Poggio, A., Cacciaguerra, L., Manfredi, A. A., Meani, A., & Filippi, M. (2021). Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics. Investigative Radiology, 56(4), 252–260. https://doi.org/10.1097/ RLI.0000000000000735

Rotstein, D., & Montalban, X. (2019). Reaching an evidencebased prognosis for personalized treatment of multiple sclerosis. Nature Reviews. Neurology, 15(5), 287–300. https://doi.org/10.1038/s41582-019-0170-8

Roy, S., Butman, J. A., Reich, D. S., Calabresi, P. A., & Pham, D. L. (2018). Multiple Sclerosis Lesion Segmentation from Brain MRI via Fully Convolutional Neural Networks. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1803.09172

Saccà, V., Sarica, A., Novellino, F., Barone, S., Tallarico, T., Filippelli, E., Granata, A., Chiriaco, C., Bruno Bossio, R., Valentino, P., & Quattrone, A. (2019). Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data. Brain Imaging and Behavior, 13(4), 1103–1114. https://doi.org/10.1007/s11682-018-9926-9

Salvatore, C., Cerasa, A., Battista, P., Gilardi, M. C., Quattrone, A., Castiglioni, I., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Frontiers in Neuroscience, 9, 307. https://doi.org/10.3389/fnins.2015.00307

Salvatore, C., Cerasa, A., Castiglioni, I., Gallivanone, F., Augimeri, A., Lopez, M., Arabia, G., Morelli, M., Gilardi, M. C., & Quattrone, A. (2014). Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy. Journal of Neuroscience Methods, 222, 230–237. https://doi.org/10.1016/j.jneumeth.2013.11.016

Samarasekera, S., Udupa, J. K., Miki, Y., Wei, L., & Grossman, R. I. (1997). A new computer-assisted method for the quantification of enhancing lesions in multiple sclerosis. Journal of Computer Assisted Tomography, 21(1), 145–151. https://doi.org/10.1097/00004728-199701000-00028

Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., Hoshi, M., Ilg, R., Schmid, V. J., Zimmer, C., Hemmer, B., & Mühlau, M. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. NeuroImage, 59(4), 3774–3783. https://doi.org/10.1016/j.neuroimage.2011.11.032

Schmitt, N., Mokli, Y., Weyland, C. S., Gerry, S., Herweh, C., Ringleb, P. A., & Nagel, S. (2022). Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients. European Radiology, 32(4), 2246–2254. https://doi.org/10.1007/s00330-021-08352-4

Schröder, J., & Thomalla, G. (2016). A Critical Review of Alberta Stroke Program Early CT Score for Evaluation of Acute Stroke Imaging. Frontiers in Neurology, 7, 245. https://doi.org/10.3389/ fneur.2016.00245

Schweitzer, A. D., Niogi, S. N., Whitlow, C. T., & Tsiouris, A. J. (2019). Traumatic Brain Injury: Imaging Patterns and Complications. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 39(6), 1571–1595. https://doi.org/10.1148/rg.2019190076

Seker, F., Pfaff, J., Nagel, S., Vollherbst, D., Gerry, S., Möhlenbruch, M. A., Bendszus, M., & Herweh, C. (2019). CT Reconstruction Levels Affect Automated and Reader- Based ASPECTS Ratings in Acute Ischemic Stroke. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 29(1), 62–64. https://doi.org/10.1111/jon.12562

Siddique, M. M. R., Yang, D., He, Y., Xu, D., & Myronenko, A. (2022). Automated ischemic stroke lesion segmentation from 3D MRI. In arXiv [eess.IV]. arXiv. http://arxiv.org/abs/2209.09546

Singh, G., Manjila, S., Sakla, N., True, A., Wardeh, A. H., Beig, N., Vaysberg, A., Matthews, J., Prasanna, P., & Spektor, V. (2021). Radiomics and radiogenomics in gliomas: a contemporary update. British Journal of Cancer, 125(5), 641–657. https://doi.org/10.1038/s41416-021-01387-w

Skull fractures. (n.d.). Retrieved January 7, 2023, from https:// bestpractice.bmj.com/topics/en-gb/3000207

Song, T. (2019). Generative Model-Based Ischemic Stroke Lesion Segmentation. In arXiv [eess.IV]. arXiv. http://arxiv.org/ abs/1906.02392

Spasov, S., Passamonti, L., Duggento, A., Liò, P., Toschi, N., & Alzheimer’s Disease Neuroimaging Initiative. (2019). A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. NeuroImage, 189, 276–287. https://doi.org/10.1016/j. neuroimage.2019.01.031

Strub, W. M., Leach, J. L., Tomsick, T., & Vagal, A. (2007). Overnight preliminary head CT interpretations provided by residents: locations of misidentified intracranial hemorrhage. AJNR. American Journal of Neuroradiology, 28(9), 1679–1682. https://doi.org/10.3174/ajnr.A0653

Tang, Y., Xiao, X., Xie, H., Wan, C.-M., Meng, L., Liu, Z.-H., Liao, W.-H., Tang, B.-S., & Guo, J.-F. (2017). Altered Functional Brain Connectomes between Sporadic and Familial Parkinson’s Patients. Frontiers in Neuroanatomy, 11, 99. https://doi.org/10.3389/fnana.2017.00099

Theocharakis, P., Glotsos, D., Kalatzis, I., Kostopoulos, S., Georgiadis, P., Sifaki, K., Tsakouridou, K., Malamas, M., Delibasis, G., Cavouras, D., & Nikiforidis, G. (2009). Pattern recognition system for the discrimination of multiple sclerosis from cerebral microangiopathy lesions based on texture analysis of magnetic resonance images. Magnetic Resonance Imaging, 27(3), 417–422. https://doi.org/10.1016/j. mri.2008.07.014

Thomalla, G., Cheng, B., Ebinger, M., Hao, Q., Tourdias, T., Wu, O., Kim, J. S., Breuer, L., Singer, O. C., Warach, S., Christensen, S., Treszl, A., Forkert, N. D., Galinovic, I., Rosenkranz, M., Engelhorn, T., Köhrmann, M., Endres, M., Kang, D. W., … Gerloff, C. (2011). DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): A multicentre observational study. Lancet Neurology, 10(11), 978–986. https:// doi.org/10.1016/S1474-4422(11)70192-2

Thomalla, G., Simonsen, C. Z., Boutitie, F., Andersen, G., Berthezene, Y., Cheng, B., Cheripelli, B., Cho, T.-H., Fazekas, F., Fiehler, J., Ford, I., Galinovic, I., Gellissen, S., Golsari, A., Gregori, J., Günther, M., Guibernau, J., Häusler, K. G., Hennerici, M., … Gerloff, C. (2018). MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. The New England Journal of Medicine, NEJMoa1804355. https://doi.org/10.1056/ NEJMoa1804355

Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M. S., Fujihara, K., Galetta, S. L., Hartung, H. P., Kappos, L., Lublin, F. D., Marrie, R. A., Miller, A. E., Miller, D. H., Montalban, X., … Cohen, J. A. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurology, 17(2), 162–173. https://doi.org/10.1016/S1474- 4422(17)30470-2

Thust, S. C., van den Bent, M. J., & Smits, M. (2018). Pseudoprogression of brain tumors. Journal of Magnetic Resonance Imaging: JMRI, 48(3), 571–589. https://doi. org/10.1002/jmri.26171

Tommasin, S., Cocozza, S., Taloni, A., Giannì, C., Petsas, N., Pontillo, G., Petracca, M., Ruggieri, S., De Giglio, L., Pozzilli, C., Brunetti, A., & Pantano, P. (2021). Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis. Journal of Neurology, 268(12), 4834–4845. https://doi.org/10.1007/s00415- 021-10605-7

Tsai, J. P., & Albers, G. W. (2017). Wake-Up Stroke. Topics in Magnetic Resonance Imaging: TMRI, 1. https://doi.org/10.1097/ RMR.0000000000000126

Valverde, S., Cabezas, M., Roura, E., González-Villà, S., Pareto, D., Vilanova, J. C., Ramió-Torrentà, L., Rovira, À., Oliver, A., & Lladó, X. (2017). Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage, 155, 159–168. https://doi.org/10.1016/j.neuroimage.2017.04.034

Valverde, S., Salem, M., Cabezas, M., Pareto, D., Vilanova, J. C., Ramió-Torrentà, L., Rovira, À., Salvi, J., Oliver, A., & Lladó, X. (2019). One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. NeuroImage. Clinical, 21, 101638. https://doi.org/10.1016/j. nicl.2018.101638

van Asch, C. J., Luitse, M. J., Rinkel, G. J., van der Tweel, I., Algra, A., & Klijn, C. J. (2010). Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurology, 9(2), 167–176. https://doi. org/10.1016/S1474-4422(09)70340-0

van Leeuwen, K. G., Meijer, F. J. A., Schalekamp, S., Rutten, M. J. C. M., van Dijk, E. J., van Ginneken, B., Govers, T. M., & de Rooij, M. (2021). Cost-effectiveness of artificial intelligence aided vessel occlusion detection in acute stroke: an early health technology assessment. Insights into Imaging, 12(1), 133. https://doi.org/10.1186/s13244-021-01077-4

van Leeuwen, K. G., Schalekamp, S., Rutten, M. J. C. M., van Ginneken, B., & de Rooij, M. (2021). Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. European Radiology, 31(6), 3797–3804. https://doi.org/10.1007/s00330-021-07892-z

Wachinger, C., Reuter, M., & Klein, T. (2018). DeepNAT: Deep convolutional neural network for segmenting neuroanatomy. NeuroImage, 170, 434–445. https://doi.org/10.1016/j. neuroimage.2017.02.035

Wang, X., Shen, T., Yang, S., Lan, J., Xu, Y., Wang, M., Zhang, J., & Han, X. (2021). A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans. NeuroImage. Clinical, 32, 102785. https://doi. org/10.1016/j.nicl.2021.102785

Wardlaw, J. M., Mair, G., von Kummer, R., Williams, M. C., Li, W., Storkey, A. J., Trucco, E., Liebeskind, D. S., Farrall, A., Bath, P. M., & White, P. (2022). Accuracy of Automated Computer-Aided Diagnosis for Stroke Imaging: A Critical Evaluation of Current Evidence. Stroke; a Journal of Cerebral Circulation, 53(7), 2393–2403. https://doi.org/10.1161/ STROKEAHA.121.036204

Wattjes, M. P., Rovira, À., Miller, D., Yousry, T. A., Sormani, M. P., de Stefano, M. P., Tintoré, M., Auger, C., Tur, C., Filippi, M., Rocca, M. A., Fazekas, F., Kappos, L., Polman, C., Frederik Barkhof, Xavier Montalban, & MAGNIMS study group. (2015). Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis--establishing disease prognosis and monitoring patients. Nature Reviews. Neurology, 11(10), 597–606. https://doi.org/10.1038/nrneurol.2015.157

Wildner, P., Stasiołek, M., & Matysiak, M. (2020). Differential diagnosis of multiple sclerosis and other inflammatory CNS diseases. Multiple Sclerosis and Related Disorders, 37, 101452. https://doi.org/10.1016/j.msard.2019.101452

Wismüller, A., & Stockmaster, L. (2020). A prospective randomized clinical trial for measuring radiology study reporting time on Artificial Intelligence-based detection of intracranial hemorrhage in emergent care head CT. Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, 11317, 144–150. https://doi. org/10.1117/12.2552400

Wong, K. K., Cummock, J. S., Li, G., Ghosh, R., Xu, P., Volpi, J. J., & Wong, S. T. C. (2022). Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome. Stroke; a Journal of Cerebral Circulation, 101161STROKEAHA121037982. https://doi. org/10.1161/STROKEAHA.121.037982

World Stroke Organisation (2022) Global Stroke Fact Sheet. Retrieved December 2022 from https://www.world-stroke.org/ assets/downloads/WSO_Global_Stroke_Fact_Sheet.pdf

Wottschel, V., Alexander, D. C., Kwok, P. P., Chard, D. T., Stromillo, M. L., De Stefano, N., Thompson, A. J., Miller, D. H., & Ciccarelli, O. (2015). Predicting outcome in clinically isolated syndrome using machine learning. NeuroImage. Clinical, 7, 281–287. https://doi.org/10.1016/j.nicl.2014.11.021

Wottschel, V., Chard, D. T., Enzinger, C., Filippi, M., Frederiksen, J. L., Gasperini, C., Giorgio, A., Rocca, M. A., Rovira, A., De Stefano, N., Tintoré, M., Alexander, D. C., Barkhof, F., Ciccarelli, O., & MAGNIMS study group and the EuroPOND consortium. (2019). SVM recursive feature elimination analyses of structural brain MRI predicts nearterm relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage. Clinical, 24, 102011. https://doi.org/10.1016/j.nicl.2019.102011

Yahav-Dovrat, A., Saban, M., Merhav, G., Lankri, I., Abergel, E., Eran, A., Tanne, D., Nogueira, R. G., & Sivan-Hoffmann, R. (2021). Evaluation of Artificial Intelligence-Powered Identification of Large-Vessel Occlusions in a Comprehensive Stroke Center. AJNR. American Journal of Neuroradiology, 42(2), 247–254. https://doi.org/10.3174/ajnr.A6923

Ye, H., Gao, F., Yin, Y., Guo, D., Zhao, P., Lu, Y., Wang, X., Bai, J., Cao, K., Song, Q., Zhang, H., Chen, W., Guo, X., & Xia, J. (2019). Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. European Radiology, 29(11), 6191–6201. https:// doi.org/10.1007/s00330-019-06163-2

Yoo, Y., Tang, L. Y. W., Brosch, T., Li, D. K. B., Kolind, S., Vavasour, I., Rauscher, A., MacKay, A. L., Traboulsee, A., & Tam, R. C. (2018). Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. NeuroImage. Clinical, 17, 169–178. https://doi.org/10.1016/j. nicl.2017.10.015

Zaki, L. A. M., Vernooij, M. W., Smits, M., Tolman, C., Papma, J. M., Visser, J. J., & Steketee, R. M. E. (2022). Comparing two artificial intelligence software packages for normative brain volumetry in memory clinic imaging. Neuroradiology, 64(7), 1359–1366. https://doi.org/10.1007/s00234-022-02898-w

Zhang, Q., Cao, J., Zhang, J., Bu, J., Yu, Y., Tan, Y., Feng, Q., & Huang, M. (2019). Differentiation of Recurrence from Radiation Necrosis in Gliomas Based on the Radiomics of Combinational Features and Multimodality MRI Images. Computational and Mathematical Methods in Medicine, 2019, 2893043. https://doi. org/10.1155/2019/2893043

Zhang, S., Nguyen, T. D., Zhao, Y., Gauthier, S. A., Wang, Y., & Gupta, A. (2018). Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions. NeuroImage. Clinical, 18, 143–148. https://doi.org/10.1016/j. nicl.2018.01.013

Zhang, Y.-Q., Liu, A.-F., Man, F.-Y., Zhang, Y.-Y., Li, C., Liu, Y.-E., Zhou, J., Zhang, A.-P., Zhang, Y.-D., Lv, J., & Jiang, W.-J. (2022). MRI radiomic features-based machine learning approach to classify ischemic stroke onset time. Journal of Neurology, 269(1), 350–360. https://doi.org/10.1007/s00415-021-10638-y

Zhao, Y., Healy, B. C., Rotstein, D., Guttmann, C. R. G., Bakshi, R., Weiner, H. L., Brodley, C. E., & Chitnis, T. (2017). Exploration of machine learning techniques in predicting multiple sclerosis disease course. PloS One, 12(4), e0174866. https://doi.org/10.1371/journal.pone.0174866

Zhao, Y., Wang, T., Bove, R., Cree, B., Henry, R., Lokhande, H., Polgar-Turcsanyi, M., Anderson, M., Bakshi, R., Weiner, H. L., Chitnis, T., & SUMMIT Investigators. (2020). Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study. NPJ Digital Medicine, 3, 135. https://doi. org/10.1038/s41746-020-00338-8

Zhu, H., Jiang, L., Zhang, H., Luo, L., Chen, Y., & Chen, Y. (2021). An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. NeuroImage. Clinical, 31, 102744. https://doi.org/10.1016/j. nicl.2021.102744

Zurita, M., Montalba, C., Labbé, T., Cruz, J. P., Dalboni da Rocha, J., Tejos, C., Ciampi, E., Cárcamo, C., Sitaram, R., & Uribe, S. (2018). Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data. NeuroImage. Clinical, 20, 724–730. https://doi.org/10.1016/j. nicl.2018.09.002

 

FREE EBOOK

Artificial Intelligence   
Imaging Applications  
in Neuroradiology

Download the ebook
Artificial Intelligence Imaging Applications In Neuroradiology